Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infection ; 2023 Apr 17.
Article in English | MEDLINE | ID: covidwho-2303264

ABSTRACT

PURPOSE: The Ad26.COV2.S vaccine is a replication-incompetent human adenovirus type 26 vector encoding the SARS-CoV-2 spike protein. In a phase 1-2a trial, a single dose of Ad26.COV2.S induced SARS-CoV-2 spike-specific antibodies in ≥ 96% of healthy adults. To investigate vaccine immunogenicity in HIV-1-infection, we measured SARS-CoV-2 spike-specific antibodies in Ad26.COV2.S vaccinated HIV-1-infected patients and analyzed the presence of pre-existing Ad26 neutralizing antibodies. METHODS: We included all Ad26.COV2.S vaccinated HIV-1-infected patients of Erlangen HIV cohort fulfilling all inclusion criteria. The study cohort consisted of 15 HIV-1-infected patients and three HIV-1-uninfected subjects who received the Ad26.COV2.S vaccine between April and November 2021. Pre-vaccination sera were collected between October 2014 and June 2021, post-vaccination sera between June and December 2021. Neutralizing antibodies towards Ad26 were determined by a FACS-based inhibition assay measuring the expression of SARS-CoV-2 spike and adenoviral proteins in HEK293T cells after in-vitro transduction with Ad26.COV2.S or the control ChAdOx1-S. RESULTS: Six out of 15 HIV-1-infected patients failed to develop SARS-CoV-2-specific antibodies and four patients developed weak antibody responses after vaccination with Ad26.COV2.S. Pre-vaccination sera of four of the six vaccine non-responders showed neutralizing activity towards Ad26.COV2.S but not toward the ChAdOx1-S vaccine at 1:50 dilution. After Ad26.COV2.S vaccination, 17 of the 18 subjects developed strong Ad26-neutralizing activity and only one of the 18 subjects showed neutralizing activity towards the ChAdOx1-S vaccine. CONCLUSION: Ad26.COV2.S vaccination showed a high failure rate in HIV-1-infected patients. Pre-existing immunity against Ad26 could be an important contributor to poor vaccine efficacy in a subgroup of patients.

2.
Sci Immunol ; 8(79): eade2798, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2193419

ABSTRACT

RNA vaccines are efficient preventive measures to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. High levels of neutralizing SARS-CoV-2 antibodies are an important component of vaccine-induced immunity. Shortly after the initial two mRNA vaccine doses, the immunoglobulin G (IgG) response mainly consists of the proinflammatory subclasses IgG1 and IgG3. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of noninflammatory IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. IgG4 antibodies among all spike-specific IgG antibodies rose, on average, from 0.04% shortly after the second vaccination to 19.27% late after the third vaccination. This induction of IgG4 antibodies was not observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. Single-cell sequencing and flow cytometry revealed substantial frequencies of IgG4-switched B cells within the spike-binding memory B cell population [median of 14.4%; interquartile range (IQR) of 6.7 to 18.1%] compared with the overall memory B cell repertoire (median of 1.3%; IQR of 0.9 to 2.2%) after three immunizations. This class switch was associated with a reduced capacity of the spike-specific antibodies to mediate antibody-dependent cellular phagocytosis and complement deposition. Because Fc-mediated effector functions are critical for antiviral immunity, these findings may have consequences for the choice and timing of vaccination regimens using mRNA vaccines, including future booster immunizations against SARS-CoV-2.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination
3.
Viruses ; 14(3)2022 03 21.
Article in English | MEDLINE | ID: covidwho-1753693

ABSTRACT

Only limited data are available regarding the immunogenicity of the BNT162b2 mRNA vaccine in HIV-1+ patients. Therefore, we investigated the humoral immune response after BNT162b2-mRNA vaccination or SARS-CoV-2 infection in HIV-1+ patients on antiretroviral therapy compared to HIV-1-uninfected subjects. Serum and saliva samples were analysed by SARS-CoV-2 spike-specific IgG and IgA ELISAs and a surrogate neutralization assay. While all subjects developed anti-spike IgG and IgA and neutralizing antibodies in serum after two doses of BNT162b2 mRNA vaccine, the HIV-1+ subjects displayed significantly lower neutralizing capacity and anti-spike IgA in serum compared to HIV-1-uninfected subjects. Serum levels of anti-spike IgG and neutralizing activity were significantly higher in vaccinees compared to SARS-CoV-2 convalescents irrespective of HIV-1 status. Among SARS-CoV-2 convalescents, there was no significant difference in spike-specific antibody response between HIV-1+ and uninfected subjects. In saliva, anti-spike IgG and IgA antibodies were detected both in vaccinees and convalescents, albeit at lower frequencies compared to the serum and only rarely with detectable neutralizing activity. In summary, our study demonstrates that the BNT162b2 mRNA vaccine induces SARS-CoV-2-specific antibodies in HIV-1-infected patients on antiretroviral therapy, however, lower vaccine induced neutralization activity indicates a lower functionality of the humoral vaccine response in HIV-1+ patients.


Subject(s)
COVID-19 , HIV-1 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , Humans , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
4.
Front Immunol ; 12: 627568, 2021.
Article in English | MEDLINE | ID: covidwho-1231335

ABSTRACT

The beta-coronavirus SARS-CoV-2 induces severe disease (COVID-19) mainly in elderly persons with risk factors, whereas the majority of patients experience a mild course of infection. As the circulating common cold coronaviruses OC43 and HKU1 share some homologous sequences with SARS-CoV-2, beta-coronavirus cross-reactive T-cell responses could influence the susceptibility to SARS-CoV-2 infection and the course of COVID-19. To investigate the role of beta-coronavirus cross-reactive T-cells, we analyzed the T-cell response against a 15 amino acid long peptide (SCoV-DP15: DLSPRWYFYYLGTGP) from the SARS-CoV-2 nucleoprotein sequence with a high homology to the corresponding sequence (QLLPRWYFYYLGTGP) in OC43 and HKU1. SCoV-DP15-specific T-cells were detected in 4 out of 23 (17.4%) SARS-CoV-2-seronegative healthy donors. As HIV-1 infection is a potential risk factor for COVID-19, we also studied a cohort of HIV-1-infected patients on antiretroviral therapy. 44 out of these 116 HIV-1-infected patients (37.9%) showed a specific recognition of the SCoV-DP15 peptide or of shorter peptides within SCoV-DP15 by CD4+ T-cells and/or by CD8+ T-cells. We could define several new cross-reactive HLA-I-restricted epitopes in the SARS-CoV-2 nucleoprotein such as SPRWYFYYL (HLA-B*07, HLA-B*35), DLSPRWYFYY (HLA-A*02), LSPRWYFYY (HLA-A*29), WYFYYLGTGP and WYFYYLGT. Epitope specific CD8+ T-cell lines recognized corresponding epitopes within OC43 and HKU1 to a similar degree or even at lower peptide concentrations suggesting that they were induced by infection with OC43 or HKU1. Our results confirm that SARS-CoV-2-seronegative subjects can target SARS-CoV-2 not only by beta-coronavirus cross-reactive CD4+ T-cells but also by cross-reactive CD8+ cytotoxic T-cells (CTL). The delineation of cross-reactive T-cell epitopes contributes to an efficient epitope-specific immunomonitoring of SARS-CoV-2-specific T-cells. Further prospective studies are needed to prove a protective role of cross-reactive T-cells and their restricting HLA alleles for control of SARS-CoV-2 infection. The frequent observation of SARS-CoV-2-reactive T-cells in HIV-1-infected subjects could be a reason that treated HIV-1 infection does not seem to be a strong risk factor for the development of severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Common Cold/immunology , Epitopes, T-Lymphocyte/immunology , Nucleoproteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , COVID-19/genetics , COVID-19/pathology , Cell Line , Common Cold/genetics , Common Cold/pathology , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Female , Humans , Male , Middle Aged , Nucleoproteins/genetics , SARS-CoV-2/genetics , T-Lymphocytes, Cytotoxic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL